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Two-dimensional stationary acoustic processes within a fluid-filled infinite do- 
!nain bounded by the sides of a right angle are considered. The pressure for 

which the Helmholtz equation is assumed satisfied within the domain, and some 
conditions containing high order derivatives on the boundary are regarded as the 

desired quantities. Expressions for the boundary operators are not made specific. 
An exact representation is found for the pressure when the sound field is excited 
by a point type source in the fluid. A number of specific problems of hydroa- 
caustic wave diffraction by two mutually perpendicular plates is examined. 

1. Formulation of the problem. Let us seek the solution of the Helmholtz 
equation 

(A + k*) P (x, y) = - 6 (x - x0, y - yo) (1.1) 

satisfying the boundary conditions 

LIP (x, 0) = 0, x>o (1.2) 

L,P (0, L/) = 07 Y>O 

in the first quadrant of a Cartesian 2, y coordinate system. Here P (I, y) is the pres- 

sure in the fluid and k is the wave number. It is assumed that the time dependence is 
given by the factor e-iwt which is omitted throughout. The effect of the boundary ope- 
rators is determined by the formulas 

L,=mll -sa $+m+&) 
( ) 

L, = m21 (-$)i+mz2(-&) 

(1.3) 

where may (a, y = 1, 2) are polynomials of their arguments. The coefficients of 
these polynomials are independent of the space variables x and y. 

It is assumed that 

1) The polynomial m2 (A) and the algebraic function I, (h) and m, (A),/, (A), 
respectively 

m, (h) == m,, (A2 - k2) iA + m,, (A* - k’) 

1, (h) = - ma1 (h2) l/h2 - k2 + ma2 (A*) (3 = I, 2) (1.4) 
have no common roots. Here the branches of the radical 1/n are selected in 

the customary manner. The slit at the point h = k is located entirely in the upper 
half-plane, while the slit from the point i = -- k is drawn keeping the central sym- 
metry of the sketch relative to the origin. It is considered that lim J1o J/h’ - k2 == 
+ CO as h + -5 00 on the real axis of the main sheet of the Riemann surface. 

2) The algebraic function I, (iL) has no real roots for Im k >, 0. 
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The property (1) will be used below to construct the solution. 
The property (2) is needed to satisfy the ultimate absorption principle [ 11. 
The solution is sought in the class of continuous functions at the origin. Compliance 

with the principle of ultimate absorption is also assumed. In other words, in the presence 

of the positive imaginary part in the wave number (k = k’ + ik”; k’, k” > 0) the 

solution should decrease exponentially at infinity, and the case of real positive k is con- 
sidered by means of the passage to the limit k” -+ + 0. 

The solution of the problem posed is easily obtained by the mapping method in the 

particular case of the simplest Dirichlet boundary conditions (free fluid surface L, == 1, 

L, = 1) or Neumann boundary conditions (rigid boundary 
L, = i3 I ay, L, = d I ax) 

The case of mixed or impedance boundary conditions (r?~,~ are nonzero constants) 
can be considered by the method proposed by Buchwald in solving a diffraction problem 
for waves on a fluid surface B]. The Buchwald method is extended below to the case 
of boundary-contact problems when the differential order of at least one of the opera- 
tors L, (a = 1, 2) exceeds unity. The presence of high order differential operators 
in the boundary conditions results in the fact that the solution of the problem posed at 

the beginning of ‘Sect. 1 ceases to be unique. This solution, called general, contains 
some number N of arbitrary constants. As in the case examined in [3], this number can 
be determined from the formula (*) 

!\i :m E 
c 

h’, _f. N2 -- 1 
2 ) 

(1.5) 

Here N,,, are the orders of the differential operators Lx,*, and E (x) denotes the in- 
teger part of X. Arbitrariness in the solution is eliminated after the addition of N 

independent boundary-contact conditions in the formulation of the problem. These 
conditions are the following in the case under consideration 

R,fiP (0, 0) + R,$P (0, 0) = 0 (p = 1, 2,. . N) 

RlpP(O, 0) = h ~1 ,,[ (4$).&f s,+ jy W40) (1.6) 

R,$P (o,(l) = ;i [“a@~ (-i 5) ; + saQ2 (-i ;)I p co, y) 

where S, au (a, y = 1, 2, n = 1, 2, . . . N) are polynomials of their arguments. 

Example 1. Diffraction at the right angle. Let us consider a fluid- 
filled tank (I > 0, y > 0) whose walls (Z = 0, y > 0 and z > 0, y=O) are elastic 
plates capable only of bending motions. In this case the following expressions hold for 

the boundary operators : 
LI=(&-kl”)g+v.’ (1.7) 

L2=(.&k24)~+v,, va+ 

where k, are the wave numbers of the bending waves in the plates, p is the fluid den- 
sity, and D, are the cylindrical plate stiffnesses(c: = 1,2). 

l ) Let us note that there is a misprint in (2.20) in [S]. This formula should be analog- 

ous to (1.5). 
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According to (1.5). the general solution of such a problem contains four arbitrary con- 
stants. To complete the description of this mechanical model it is necessary to indicate 

the mode on the plate junction (weld, hinge connection, crack). Let us concider the 
plates welded rigidly. which yields the following set of boundary-contact conditions: 

The first two conditions denote the absence of plate displacements at the origin. This 
circumstance is associated with the fact that each plate is assumed to possess infinite 
stiffness relative to longitudinal d~spiacements. The last two conditions express the in- 

variability of the angle between the plates and the absence of a secondary torque on the 
plate junction, respectively, 

Example 2. Diffraction by plates connected in a T . Let tworight 
angles formed by an infinite (y = 0) and semi-infinite (I = 0, y > 0) plate welded 
at a right angle be filled with fluid. We consider the source field to be at a point in the 

first quadrant, and the elastic properties of the plates to be the same as in Example 1. 
The problem is to solve the Helmholtz equation (1. l), which is inhomogeneous for x > 

0 and homogeneous for I < 0, under the boundary conditions 

[(&AI”)&fVl]P(X, O)=O, x#O Wf 

and the conjugate conditions 

~(~-k$)~f)(~O~~)+~~(~O~~)]+Y"~~(+o,y)-~(-o,y)l=o (1.10) 

w+o,?!~=aPt--O,y) 

8X ax ' 
Y>O 

Here the boundary-contact conditions are the following: 

Expanding the function P (I, Y) in even and odd parts in the variable z 

P (5, Yf = ‘i3 IP, (5, Yl + P- (z, Y)ft P+ (2, Y) = P (l, Yf +- P (-z* Y) 

let us separate the problem into two problems, each of which can be formulated just for 
positive values of I. For P, (5, y) we have L, = a/ 8.z (L, is given by the first formula 
of (1. ‘7)), and the two boundary-contact conditions are the first conditions (I. 8) and 
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lim a2p, (x, 0) 
ax&/ = 

0 
x--to 

The problem for P_ (5, y) agrees with the problem in Example 1 if D, is replaced by 
1/z D, in the last condition of (1. 8) and v2 by 2v2 in the second condition in (1.7). 

Example 3. Diffraction by a cruciform intersection of infinite 

plates (x = 0, y = 0). The problem is reduced to four independent problems for a 
right angle by decomposition of the total field P fr, y) into even and odd parts in each 
of the space variables. Their formulation is not difficult, and is omitted here in the in- 

terest of brevity. 
Let us note that diffraction by a T connection of plates has already been examined 

[4, 51; however, the exact solution of the problem taking account of the contact between 
the semi-infinite plate and the fluid is not contained in these papers. 

2. Generrl solution. A solution satisfying all the requirements of the problem 

except the boundary-contact conditions (1.6) is constructed below. 
Let us represent the desired field ‘P (5, y) as the sum of three terms 

p = PO + P(1) + P(2) (2.1) 

Here Pa is the field of a point source whose coordinates (zs, yo> are in an infinite 
liquid medium, Let us use two modes of writing the field Pa 

Po (5, y) = & +\= QXP [ih (x - xo> - r/AZ - k2 I Y - YO t 1 VA (2.2) 
I 

-02 

The terms P(1) and P(s) should separately satisfy the homogeneous Helmholtz equa- 
tion, the requirement of continuity at the origin, and the principle of ultimate absorption. 

Let us subject them to the following boundary conditions: 

&P(r) (t, 0) = - LIP, (z, O), L,P(l) (0, y) = 0 (2.3) 

.&P(2) (s, 0) = 0, L,W) (0, y) = - L,P, (0, Y) 

The boundary conditions (1.2) will thereby be satisfied automatically for P. 
bet us limit ourselves to the problem for P(t) since finding J’(s) is accomplished ana- 

logously. tit us seek P (‘) in the form of an expansion in plane waves 

p(f) (LLI y) zz2- 
I c fin . p1 (A) exp (-9~: - dh2 - k2y) dh (2.4) 

The function p1 (h) and the contour A, are desired. As will be shown below, PI (A) is 
some transcendental function, bifurcated at h = + k and with a certain set of poles. 
Assuming the estimate 

P1 f;l) = 0 (h-r-r) (I h 1 --F 00, 2.5 > 0) (2.5) 

to hold in the neighborhood of the real axis, we satisfy the requirement for continuity 
at the origin. 

In 131, where diffraction by two semi-infinite plates joined so that they are mutual 
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extensions, analogous representation for the diffracted field takes part ; the integration 
is performed over the real axis. The difference between (2.4) and its corresponding re- 
presentation of (2. 5) from [S] is determined by the requirement of the ultimate absorp- 
tion principle. The possibility of deforming the contour of integration into the upper 
and lower half-planes from the real axis (as is done in [l]) must be available in the 
problem for a half-plane In the case considered here the negative values of the variable 
z do not belong to the domain where the solution is sought, and only the possibility of 

deforming the contour into the upper half-plane is needed. Hence, integration over some 
contour of more general shape can be used in place of integration over the real axis . 
Thus, if it is considered that the ends of the contour A, proceed along the real axis and 
only a certain number of poles JQ (h) is located between A, and the real axis for each 

of which 
Imh> 0, Re l/ha--k2>0 

then (2,4) will determine a function satisfying the ultimate absorption principle as be- 
fore. Let us henceforth assume that the desired contour possesses the properties listed. 
The specific selection of the contour will be accomplished below. 

Using the boundary conditions, we arrive at the following integral equation for the 
desired functions : , n 

-& \ I, (h) p1 (a) exp (az) dh = 
., 

Al 
+-= 

1 
-- 4,: \ 4’ (a) em (ih (J: - 4 - VA2 - k2y,) 1/G (2.6) 

2.3 
-- ( m2 (h) p1 (h) exp (- VA2 - k”y) dh = 0 

d, 
(2.7) 

zpo (a) = ma1 (h2) VA2 - k2 + ma2 (a’) (2.8) 
The algebraic function I,’ (?L.) has no poles, hence, integration over the real axis can 

be replaced by integration over A, in the right side of (2.6). We consequently have 

SI k (A) Pl (A) + 
Al 

v__& 1: (h) exp (--ihz, - v/h2yo)] exp (ihs) dh = 0 

(2.9) 
Let us set 

4 (A) Pl (A) + vZ& exp (- ihx, - l/h2 - k’ya) = @+ (A) (2.10) 

to satisfy (2.9), where @+ (i) is a function analytic above the contour A,. 
Equation (2.7) will be satisfied if the integrand is assumed odd 

m2 (A) p1 (a) = - nh (- a) P1 (- 9 (2.11) 

and the contour of integration is assumed symmetric relative to the origin. In order to 
satisfy the ultimate absorption principle, let us assume that there are no singularities of 
pi (a) above the contour of integration in the lower half-plane. The selection of the 
contour A, in application to the case examined in Example 1 is shown in Fig. 1. The 
part of the ;I, contour located on the main sheet of the Riemann surface is mapped by 
the solid line, and the slits are shown by the dashes. The roots of the Z,(A) and m2 (h) 
are denoted respectively by & hi,, and ltqn (r/ -0, 1, , . . !t), the roots of I, (h) are 
on the second sheet mapped by the circles. Eliminating pt (h) from (2.10) and (2.11). 
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we arrive at a Riemann boundary value problem to find the piecewise-analytic function 

@+ (+ h) by means of a linear relationship connecting its limit values on both sides 
of the contour A, 

m2 (h) 4J+ (1,) 3- m2 (-A) W(---h) =- I/:1 (h), (A) E .jl (2.12 

$1 (A) = g& exp (- l/h” - Py,) [mz (h) exp (--iAz,) -1 m2 (--h) exp (ikr,)] 

(2.13) 

By using a Cauchy type integral we represent $i (A) as the difference between the 

.-A 14 l -'J3 
OA,z 

a 
0 In -----_-_ 

--__-- - ReL 

limit values above (yr+) and below (vi-) the contour hi for the piecewise-analy- 
tic function Y, 

$1 (h) = Y”1+ (A) -- Y1- (A), hE ‘II (2.14) 

(2.15) 

It is easy to see that the formula 
Al 

Y1- (- A) = - YY,f (h) (2.16) 

holds everywhere on the main sheet. On the basis of (2.12) (2.14), (2.16) we have 

m2 (A);@+ (h) - Yl+ (A)= - m, (- A) W (- A) + Y,+ (- A), h E A, (2.17) 

from which the left and right sides of (2.17) yield some function analytic and odd in the 
whole complex h plane in conformity with the Riemann theorem on analytic continua- 
tion across a contour. The estimate (2.5) will be satisfied if this function is selected as 
a polynomial of degree 2N - 1, where N is defined by (1.5). Therefore 

from which 
ma (A) a,+ (h) - Y,+ (A) : Aq$‘_i (A’) (2.18) 
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(2.19) 

11” (h) 
Pi (A) = - Ii(h) 

exp (-ihxo - l/P ~- h-%J”) 
+ 

Ylf (h) -t h&r (at) 

l/h2 11 (h) ms (h) 
(2.20) 

The function p1 (h) has a pole at the roots of the polynomial m2 (h) and the algebraic 
function I, (h). Let us recall that none of the roots of ma (h) is a root of I, (3L) (pro- 

perty (1) ) . In this case the contour A, is selected as follows : 
1. The contour h, is symmetric relative to the origin and coincides at infinity 

with the real axis. 
2. All the roots of I, (h) in the upper half-plane are above A,. 
3. All the roots .of m2 (a) are below A,, where they are bypassed (taking account 

of the bifurcation of p1 (A) at the point h = k) in such a way that Re I/-X” - k2 > 
0 at each. 

We consequently have the following expression for the field P(r): 

P(i) = P, + P,’ + Q1 

p, :.= - & \ 
i, 

# exp (ih (it. -- GJ - I/Ah” - k2 (Y t YO)) V&A 

i -- 

11’ -_ - 
c 

Yl*(h) 

1 4n 11 (h) nzll @I 
exp (ihx - Jfk” - k’y) dh (2.21) 

i, 

h?$)_, GZ) 
21 (h) m2 (h) 

exp (ihz - v/h2 - k2y) dh 

Al 

and P(z) is found analogously. The total expression for p@) is obtained from (2.21) 
by a cyclic replacement of the subscripts 1 and 2 and the variables z and y. Hence 

exp (iay - l/h2 - k2x) dh (2.22) 

agrees with Q1 (x, Y) to the accuracy of the notation of the polynomial coefficients 

(it is sufficient to replace the variable of integration ;1 in (2.22) by i I/A2 - k2). 
The final expression for the total diffraction field is 

P = P, f P, f P, + P, +- Q (2.23) 

p, (x7 Y) = - & $ ‘$-$ exp (ih (y - ya) - l/h2(k2 + 20)) 
olh 

- I/h’ _ k” 

where Pa and -Pi are given by (2.2) and (2.21). and P, is the sum of P,’ and P,‘. 
After some manipulation we have 
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Here P, has the meaning of a wave reflected from the boundary (z>O, y-0) if it is 
continued to infinity for negative x. Under the Dirichlet or Neumann boundary condi- 

tions, P, goes over into the field of an imaginary source at the point (~a, -y,,). Under 

the Dirichlet or Neumann boundary conditions P, goes over analogously into the field 
of an imaginary source at the point (- LC,,, ~a), and Pa - at the point (- z,,, - ya). 

The sum PO f PI + P, + P, satisfies all the constraints of the problem posed in 
Sect. 1, and has continuous derivatives of order N, + fl, - 1 inclusive, at the origin. 
Here v satisfies the homogeneous Helmholtz equation, the homogeneous boundary con- 

ditions (1.2). and has discontinuities in thesecond derivatives of the field at the origin. 
Jet us note that, in contrast to the case of longitudinal junctions of plates, the solution 
obtained does not contain the products of factorization of the functions Z,,, (h) and is 
simpler and more convenient for investigation. The expression obtained tor Q retains 
its form independently of the assignment of the incident field. As the field source chan- 
ges, only the numerical values of the constants of the polynomial q~_r vary. 

3. Boundary-contact conditionr, Regularization of the divergent integrals 
originating in the formal application of the boundary-contact operators is indicated below, 
and the algebraic system to find the constants in Q is also written down (see Example 1 

in Sect. 1). 
The application of the boundary-contact operators on PO, P, and P? encounters no 

difficulties since the exponential decrease at infinity is conserved in the integrands of 
the integrals obtained here, The integrand on P, behaves as IhlN1-2-P-1 at infinity for 
x = 0, !/ == 0. If it is assumed that the differential order of Ruti does not exceed ,?i, $ 
N:z - 1, then application of the boundary-contact operators will not result in the gene- 

ration of divergent integrals. Regularization of divergent integrals of the type I?,~ Q (0. 
0) can be accomplished by the example described in [S]. Regularization of such integ- 

rals by this method is possible if 

rxp (FL) Ia0 (h) - raBo (h) la (h) = 0 (I h INa) (3.1) 

rap (1) = - s,jl (1”) y?K= + s,I;z (a) 

is satisfied. 
Ta30 04 = SaCJ1 (h) l/h” - k” + ~,~a (A) 

Let us return to Example 1 from Sect.1. The general solution here contains four arbi- 

trary constants, and the field Q can be written as , 

Q=&$ 
h (ah6 $ bl.4 + ch2 + d 

I1 (h) m2 (h) 
eql (ihs - l/h3 - k” y) dh = 

1 c 4n. 

h [a (k3 2 143 + b (k2 - h”) i- c (k2 - hz) f d clrp (+I _ l/c-_; IJ tlh 

Is (h) ml (h) 

I, (1) = _ (~~4 _ k,4) I/h’ + Y,, m, = ih [(a”- - k2)2 - ka4] + v, 

Using the boundary-contact conditions (1. 8). we obtain the following system to find 
a, b, c, d: aT1,7 + bTl,s + cT1,3 + d7'1,1 = A, 

a (kaTs,l - 3k4T,,, + 3k?T,,, - Tz,~) + b (k4T,,, - 2k2T,,, + (3.2) 
T,,,) + c (k*Tz,l - T,,,) f dT,., = A, 
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a (Tl,s - keT2,, -I- 3kaT2,, - 3kT2.6 + T2,s) + b (2’~ - k4T2,2 + 2k2T2,4 - 2’2,~) + 

c (T194 - JcaT2,2 + T2,a) + d (T1,2 - T2t2) = -4, 

a [D1T1,8 + D, (keT2,3 - 3k4T2,, + 3k2T2,7 - Tz,s)l + b [D,TI,T + D, (k4T2,, - 
2k2T2,5 -I- T2,7)l f c [DIT~,, + D2 (k2T2,2 - T2,Jl f d PIT,,, -t D2T2,2) = A4 

T 
Vl hS v/h2 -. kz dh 

1, s =4n c - 
IDS 

m (h) h (A) II” (a) 
4-G 2 Res 

h* (h2 - k2) (A4 - k14) 

lJ10=0 
mz 8) I1 (A) ho (h) 

(3.3) 
q 2 Res As v/ha 

m2 (h) h (h) ho (I.) 
mz=o 

Imh>O, Re l/h2 - k” > 0, Imh.>O, Re vm>O 

The formula for T2,, is obtained from (3.3) by a cyclic replacement of the subscripts 

1 and 2, where Ag (P = 1, 2, 3, 4) are numbers obtained because of using the operators 

in the right sides of (1.8) on the expression P, + Pr + P, + P, (they are not written 
down in the interests of brevity). 

Let us note that the form of the left sides of (3.2) is independent of the nature of the 

incident wave, but is determined by the properties of the model itself. Only numerical 
values of the right sides are changed by a different selection of the field source. The 

integrals T,, are similar to the integrals in problems of acoustic diffraction by point 
disturbances of the elastic properties of plates [S, 71 and can be studied by analogolw 
methods. 
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